Predicting hydrophobic solvation by molecular simulation : 2. New united-atom model for alkanes, alkenes, and alkynes

© 2016 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 6 vom: 05. März, Seite 359-369
1. Verfasser: Jorge, Miguel (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't free energy hydrocarbons molecular simulation non-polar solubility
LEADER 01000naa a22002652 4500
001 NLM267547846
003 DE-627
005 20231224220923.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24689  |2 doi 
028 5 2 |a pubmed24n0891.xml 
035 |a (DE-627)NLM267547846 
035 |a (NLM)28032383 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jorge, Miguel  |e verfasserin  |4 aut 
245 1 0 |a Predicting hydrophobic solvation by molecular simulation  |b 2. New united-atom model for alkanes, alkenes, and alkynes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.11.2018 
500 |a Date Revised 26.11.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2016 Wiley Periodicals, Inc. 
520 |a Existing united-atom models for non-polar hydrocarbons lead to systematic deviations in predicted solvation free energies in hydrophobic solvents. In this article, an improved set of parameters is proposed for alkane molecules that corrects this systematic deviation and accurately predicts solvation free energies in hydrophobic media, while simultaneously providing a very good description of pure liquid densities. The model is then extended to alkenes and alkynes, again yielding very accurate predictions of solvation free energies and densities for these classes of compounds. For alkynes in particular, this work represents the first attempt at a systematic parameterization using the united-atom approach. Averaging over all 95 solute/solvent pairs tested, the mean signed deviation from experimental data is very close to zero, indicating no systematic error in the predictions. The fact that predictions are robust even for relatively large molecules suggests that the new model may be applicable to solvation of non-polar macromolecules without accumulation of errors. The root mean squared deviation of the simulations is only 0.6 kJ/mol, which is lower than the estimated uncertainty in the experimental measurements. This excellent performance constitutes a solid basis on which a more general model can be parameterized to describe solvation in both polar and non-polar environments. © 2016 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a free energy 
650 4 |a hydrocarbons 
650 4 |a molecular simulation 
650 4 |a non-polar 
650 4 |a solubility 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 6 vom: 05. März, Seite 359-369  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:6  |g day:05  |g month:03  |g pages:359-369 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24689  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 6  |b 05  |c 03  |h 359-369