Biomimetic Bubble-Repellent Tubes : Microdimple Arrays Enhance Repellency of Bubbles Inside of Tubes

The adhesion of bubbles underwater remains the greatest cause of malfunctions in applications such as microfluidics, medical devices, and heat exchangers. Recently, the combination of oxidization and peeling the top layer of self-organized honeycomb films with an adhesive tape resulted in the format...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 2 vom: 17. Jan., Seite 585-590
1. Verfasser: Kamei, Jun (VerfasserIn)
Weitere Verfasser: Abe, Hiroya, Yabu, Hiroshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The adhesion of bubbles underwater remains the greatest cause of malfunctions in applications such as microfluidics, medical devices, and heat exchangers. Recently, the combination of oxidization and peeling the top layer of self-organized honeycomb films with an adhesive tape resulted in the formation of an ultra-bubble-repellent and pillared polymer surface structure. However, the fabrication of honeycomb films on the inner surface of tubes and the formation of structured hydrophilic textures by peeling the top layer of honeycomb films still remain problematic. In this report, a simple fabrication technique for producing a honeycomb-patterned polymer film on the interior of a tube by dip-coating a polymer solution and blowing humid air in the tube is described. Furthermore, an ultra-bubble-repellent dimple-arrayed structure was fabricated by applying ultrasonication to the honeycomb structure formed on the interior surface of the tubes
Beschreibung:Date Completed 13.04.2018
Date Revised 13.04.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b04155