Reconstruction of Structurally-Incomplete Matrices With Reweighted Low-Rank and Sparsity Priors
Most matrix reconstruction methods assume that missing entries randomly distribute in the incomplete matrix, and the low-rank prior or its variants are used to well pose the problem. However, in practical applications, missing entries are structurally rather than randomly distributed, and cannot be...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 28. März, Seite 1158-1172 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2017
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |