Reconstruction of Structurally-Incomplete Matrices With Reweighted Low-Rank and Sparsity Priors

Most matrix reconstruction methods assume that missing entries randomly distribute in the incomplete matrix, and the low-rank prior or its variants are used to well pose the problem. However, in practical applications, missing entries are structurally rather than randomly distributed, and cannot be...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 28. März, Seite 1158-1172
Auteur principal: Yang, Jingyu (Auteur)
Autres auteurs: Yang, Xuemeng, Ye, Xinchen, Hou, Chunping
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article