Reconstruction of Structurally-Incomplete Matrices With Reweighted Low-Rank and Sparsity Priors

Most matrix reconstruction methods assume that missing entries randomly distribute in the incomplete matrix, and the low-rank prior or its variants are used to well pose the problem. However, in practical applications, missing entries are structurally rather than randomly distributed, and cannot be...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 3 vom: 28. März, Seite 1158-1172
1. Verfasser: Yang, Jingyu (VerfasserIn)
Weitere Verfasser: Yang, Xuemeng, Ye, Xinchen, Hou, Chunping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article