Automatic processing of multimodal tomography datasets

With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 24(2017), Pt 1 vom: 01. Jan., Seite 248-256
1. Verfasser: Parsons, Aaron D (VerfasserIn)
Weitere Verfasser: Price, Stephen W T, Wadeson, Nicola, Basham, Mark, Beale, Andrew M, Ashton, Alun W, Mosselmans, J Frederick W, Quinn, Paul D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article big data imaging mapping multimodal tomography
LEADER 01000naa a22002652 4500
001 NLM267420927
003 DE-627
005 20231224220638.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577516017756  |2 doi 
028 5 2 |a pubmed24n0891.xml 
035 |a (DE-627)NLM267420927 
035 |a (NLM)28009564 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parsons, Aaron D  |e verfasserin  |4 aut 
245 1 0 |a Automatic processing of multimodal tomography datasets 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.07.2017 
500 |a Date Revised 11.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source 
650 4 |a Journal Article 
650 4 |a big data 
650 4 |a imaging 
650 4 |a mapping 
650 4 |a multimodal 
650 4 |a tomography 
700 1 |a Price, Stephen W T  |e verfasserin  |4 aut 
700 1 |a Wadeson, Nicola  |e verfasserin  |4 aut 
700 1 |a Basham, Mark  |e verfasserin  |4 aut 
700 1 |a Beale, Andrew M  |e verfasserin  |4 aut 
700 1 |a Ashton, Alun W  |e verfasserin  |4 aut 
700 1 |a Mosselmans, J Frederick W  |e verfasserin  |4 aut 
700 1 |a Quinn, Paul D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 24(2017), Pt 1 vom: 01. Jan., Seite 248-256  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:24  |g year:2017  |g number:Pt 1  |g day:01  |g month:01  |g pages:248-256 
856 4 0 |u http://dx.doi.org/10.1107/S1600577516017756  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 24  |j 2017  |e Pt 1  |b 01  |c 01  |h 248-256