Gross primary production responses to warming, elevated CO2 , and irrigation : quantifying the drivers of ecosystem physiology in a semiarid grassland

© 2017 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 8 vom: 07. Aug., Seite 3092-3106
1. Verfasser: Ryan, Edmund M (VerfasserIn)
Weitere Verfasser: Ogle, Kiona, Peltier, Drew, Walker, Anthony P, De Kauwe, Martin G, Medlyn, Belinda E, Williams, David G, Parton, William, Asao, Shinichi, Guenet, Bertrand, Harper, Anna B, Lu, Xingjie, Luus, Kristina A, Zaehle, Sönke, Shu, Shijie, Werner, Christian, Xia, Jianyang, Pendall, Elise
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Bayesian modeling carbon cycle elevated CO2 grasslands gross primary production multifactor global change experiment warming Carbon Dioxide 142M471B3J
LEADER 01000naa a22002652 4500
001 NLM267274130
003 DE-627
005 20231224220324.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13602  |2 doi 
028 5 2 |a pubmed24n0890.xml 
035 |a (DE-627)NLM267274130 
035 |a (NLM)27992952 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ryan, Edmund M  |e verfasserin  |4 aut 
245 1 0 |a Gross primary production responses to warming, elevated CO2 , and irrigation  |b quantifying the drivers of ecosystem physiology in a semiarid grassland 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 John Wiley & Sons Ltd. 
520 |a Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs 
650 4 |a Journal Article 
650 4 |a Bayesian modeling 
650 4 |a carbon cycle 
650 4 |a elevated CO2 
650 4 |a grasslands 
650 4 |a gross primary production 
650 4 |a multifactor global change experiment 
650 4 |a warming 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Ogle, Kiona  |e verfasserin  |4 aut 
700 1 |a Peltier, Drew  |e verfasserin  |4 aut 
700 1 |a Walker, Anthony P  |e verfasserin  |4 aut 
700 1 |a De Kauwe, Martin G  |e verfasserin  |4 aut 
700 1 |a Medlyn, Belinda E  |e verfasserin  |4 aut 
700 1 |a Williams, David G  |e verfasserin  |4 aut 
700 1 |a Parton, William  |e verfasserin  |4 aut 
700 1 |a Asao, Shinichi  |e verfasserin  |4 aut 
700 1 |a Guenet, Bertrand  |e verfasserin  |4 aut 
700 1 |a Harper, Anna B  |e verfasserin  |4 aut 
700 1 |a Lu, Xingjie  |e verfasserin  |4 aut 
700 1 |a Luus, Kristina A  |e verfasserin  |4 aut 
700 1 |a Zaehle, Sönke  |e verfasserin  |4 aut 
700 1 |a Shu, Shijie  |e verfasserin  |4 aut 
700 1 |a Werner, Christian  |e verfasserin  |4 aut 
700 1 |a Xia, Jianyang  |e verfasserin  |4 aut 
700 1 |a Pendall, Elise  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 8 vom: 07. Aug., Seite 3092-3106  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:8  |g day:07  |g month:08  |g pages:3092-3106 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13602  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 8  |b 07  |c 08  |h 3092-3106