Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO2-WO3 Hybrid Nanorods
Understanding and manipulating the one half-reaction of photoinduced hole-oxidation to oxygen are of fundamental importance to design and develop an efficient water-splitting process. To date, extensive studies on oxygen evolution from water splitting have focused on visible-light harvesting. Howeve...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 32(2016), 49 vom: 13. Dez., Seite 13046-13053 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Understanding and manipulating the one half-reaction of photoinduced hole-oxidation to oxygen are of fundamental importance to design and develop an efficient water-splitting process. To date, extensive studies on oxygen evolution from water splitting have focused on visible-light harvesting. However, capturing low-energy photons for oxygen evolution, such as near-infrared (NIR) light, is challenging and not well-understood. This report presents new insights into photocatalytic water oxidation using visible and NIR light. WO2-WO3 hybrid nanorods were in situ fabricated using a wet-chemistry route. The presence of metallic WO2 strengthens light absorption and promotes the charge-carrier separation of WO3. The efficiency of the oxygen evolution reaction over noble-metal-free WO2-WO3 hybrids was found to be significantly promoted. More importantly, NIR light (≥700 nm) can be effectively trapped to cause the photocatalytic water oxidation reaction. The oxygen evolution rates are even up to around 220 (λ = 700 nm) and 200 (λ = 800 nm) mmol g-1 h-1. These results demonstrate that the WO2-WO3 material is highly active for water oxidation with low-energy photons and opens new opportunities for multichannel solar energy conversion |
---|---|
Beschreibung: | Date Completed 19.07.2018 Date Revised 19.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |