Shear-Induced Breakup of Cellulose Nanocrystal Aggregates

The flow properties of two kinds of cellulose nanocrystal (CNC) rods with different aspect ratios and similar zeta potentials in aqueous suspensions have been investigated. The aqueous CNC suspensions undergo a direct transition from dilute solution to colloidal glass instead of phase separation wit...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 1 vom: 10. Jan., Seite 235-242
Auteur principal: Xu, Hua-Neng (Auteur)
Autres auteurs: Tang, Yi-You, Ouyang, Xiao-Kun
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't Suspensions Water 059QF0KO0R Cellulose 9004-34-6
LEADER 01000caa a22002652 4500
001 NLM266988555
003 DE-627
005 20250221002251.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.6b03807  |2 doi 
028 5 2 |a pubmed25n0889.xml 
035 |a (DE-627)NLM266988555 
035 |a (NLM)27936767 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Hua-Neng  |e verfasserin  |4 aut 
245 1 0 |a Shear-Induced Breakup of Cellulose Nanocrystal Aggregates 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2018 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The flow properties of two kinds of cellulose nanocrystal (CNC) rods with different aspect ratios and similar zeta potentials in aqueous suspensions have been investigated. The aqueous CNC suspensions undergo a direct transition from dilute solution to colloidal glass instead of phase separation with the increasing CNC concentration. The viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. The shear-thinning behavior becomes stronger with the increasing CNC concentration. The viscosity is much higher for the unsonicated suspension when compared with the sonicated suspensions. The CNC rods appear arrested without alignment with an increasing shear rate from the small-angle light scattering patterns. The arrested glass state results from electric double layers surrounding the CNC rods, which give rise to long-ranged repulsive interactions. For the first time, we demonstrate that, within a narrow range of CNC concentrations, a shear-induced breakup process of the CNC aggregates exists when the shear rate is over a critical value and that the process is reversible in the sense that the aggregates can be reformed. We discuss the competition between the shear-induced breakup and the concentration-driven aggregation based on the experimental observations. The generated aggregate structure during the breakup process is characterized by a fractal dimension of 2.41. Furthermore, we determine two important variables-the breakup rate and the characteristic aggregate size-and derive analytical expressions for their evolution during the breakup process. The model predictions are in quantitative agreement with the experimental results 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Suspensions  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Cellulose  |2 NLM 
650 7 |a 9004-34-6  |2 NLM 
700 1 |a Tang, Yi-You  |e verfasserin  |4 aut 
700 1 |a Ouyang, Xiao-Kun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 33(2017), 1 vom: 10. Jan., Seite 235-242  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:33  |g year:2017  |g number:1  |g day:10  |g month:01  |g pages:235-242 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.6b03807  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 33  |j 2017  |e 1  |b 10  |c 01  |h 235-242