Regulating Underwater Superoleophobicity to Superoleophilicity on Hierarchical Structured Copper Substrates through Assembling n-Alkanoic Acids

In this paper, we report a simple method based on assembling n-alkanoic acids on hierarchical structured copper toward preparing surfaces with tunable oil wetting performance in water. Surface wettability from superoleophobicity to superoleophilicity in water can be regulated through tuning the chai...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 50 vom: 20. Dez., Seite 13493-13499
1. Verfasser: Li, Defeng (VerfasserIn)
Weitere Verfasser: Wu, Ang, Xu, Guangyin, Lai, Hua, Cheng, Zhongjun, Liu, Yuyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we report a simple method based on assembling n-alkanoic acids on hierarchical structured copper toward preparing surfaces with tunable oil wetting performance in water. Surface wettability from superoleophobicity to superoleophilicity in water can be regulated through tuning the chain length of n-alkanoic acids. Importantly, even in strongly acid and basic water, such phenomena can still be observed. The cooperation between the hierarchical structures and the surface chemical composition variation is responsible for the controllability. Meanwhile, the tunable ability is universal and the controllability is suitable for various oils including silicon oil, n-hexane, and chloroform. Moreover, the method was also used on copper mesh substrates, and we reported the related application of selective oil/water separation. This paper provides a flexible strategy toward preparing surfaces with tunable oil wetting performances, which can also be suitable for other materials, and offers some fresh ideas in manipulating underwater oil wetting performances on surfaces
Beschreibung:Date Completed 19.07.2018
Date Revised 19.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827