Dynamic Chemically Driven Dewetting, Spreading, and Self-Running of Sessile Droplets on Crystalline Silicon

A chemically driven dewetting effect is demonstrated using sessile droplets of dilute hydrofluoric acid on chemically oxidized silicon wafers. The dewetting occurs as the thin oxide is slowly etched by the droplet and replaced by a hydrogen-terminated surface; the result of this is a gradual increas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 32(2016), 48 vom: 06. Dez., Seite 12611-12622
1. Verfasser: Arscott, Steve (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM266966543
003 DE-627
005 20250221001819.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0889.xml 
035 |a (DE-627)NLM266966543 
035 |a (NLM)27934525 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arscott, Steve  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Chemically Driven Dewetting, Spreading, and Self-Running of Sessile Droplets on Crystalline Silicon 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.06.2018 
500 |a Date Revised 14.06.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A chemically driven dewetting effect is demonstrated using sessile droplets of dilute hydrofluoric acid on chemically oxidized silicon wafers. The dewetting occurs as the thin oxide is slowly etched by the droplet and replaced by a hydrogen-terminated surface; the result of this is a gradual increase in the contact angle of the droplet with time. The time-varying work of adhesion is calculated from the time-varying contact angle; this corresponds to the changing chemical nature of the surface during dewetting and can be modeled by the well-known logistic (sigmoid) function often used for the modeling of restricted growth, in this case, the transition from an oxidized surface to a hydrogen-terminated silicon surface. The observation of the time-varying contact angle allows one to both measure the etch rate of the silicon oxide and estimate the hydrogenation rate as a function of HF concentration and wafer type. In addition to this, at a certain HF concentration, a self-running droplet effect is observed. In contrast, on hydrogen-terminated silicon wafers, a chemically induced spreading effect is observed using sessile droplets of nitric acid. The droplet spreading can also be modeled using a logistical function, where the restricted growth is the transition from hydrogen-terminated to a chemically induced oxidized silicon surface. The chemically driven dewetting and spreading observed here add to the methods available to study dynamic wetting (e.g., the moving three-phase contact line) of sessile droplets on surfaces. By slowing down chemical kinetics of the wetting, one is able to record the changing profile of the sessile droplet with time and gather information concerning the time-varying surface chemistry. The data also indicates a chemical interface hysteresis (CIH) that is compared to contact angle hysteresis (CAH). The approach can also be used to study the chemical etching and deposition behavior of thin films using liquids by monitoring the macroscopic droplet profile and relating this to the time-varying physical and chemical interface phenomena 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 32(2016), 48 vom: 06. Dez., Seite 12611-12622  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:32  |g year:2016  |g number:48  |g day:06  |g month:12  |g pages:12611-12622 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 32  |j 2016  |e 48  |b 06  |c 12  |h 12611-12622