Towards Zero-Waste Furniture Design

In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in unwanted material wastage, especially where off-cut pieces are hard to reuse. In absence of explicit feedback on material usage, the designer remains helpless...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 12 vom: 03. Dez., Seite 2627-2640
1. Verfasser: Koo, Bongjin (VerfasserIn)
Weitere Verfasser: Hergel, Jean, Lefebvre, Sylvain, Mitra, Niloy J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in unwanted material wastage, especially where off-cut pieces are hard to reuse. In absence of explicit feedback on material usage, the designer remains helpless to effectively adapt the design - even when design variabilities exist. We investigate waste minimizing furniture design wherein based on the current design, the user is presented with design variations that result in less wastage of materials. Technically, we dynamically analyze material space layout to determine which parts to change and how , while maintaining original design intent specified in the form of design constraints. We evaluate the approach on various design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support
Beschreibung:Date Completed 17.12.2018
Date Revised 17.12.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2016.2633519