Adaptive Cascade Regression Model For Robust Face Alignment

Cascade regression is a popular face alignment approach, and it has achieved good performances on the wild databases. However, it depends heavily on local features in estimating reliable landmark locations and therefore suffers from corrupted images, such as images with occlusion, which often exists...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 2 vom: 03. Feb., Seite 797-807
1. Verfasser: Qingshan Liu (VerfasserIn)
Weitere Verfasser: Jiankang Deng, Jing Yang, Guangcan Liu, Dacheng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266781047
003 DE-627
005 20231224215255.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2633939  |2 doi 
028 5 2 |a pubmed24n0889.xml 
035 |a (DE-627)NLM266781047 
035 |a (NLM)27913349 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qingshan Liu  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Cascade Regression Model For Robust Face Alignment 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cascade regression is a popular face alignment approach, and it has achieved good performances on the wild databases. However, it depends heavily on local features in estimating reliable landmark locations and therefore suffers from corrupted images, such as images with occlusion, which often exists in real-world face images. In this paper, we present a new adaptive cascade regression model for robust face alignment. In each iteration, the shape-indexed appearance is introduced to estimate the occlusion level of each landmark, and each landmark is then weighted according to its estimated occlusion level. Also, the occlusion levels of the landmarks act as adaptive weights on the shape-indexed features to decrease the noise on the shape-indexed features. At the same time, an exemplar-based shape prior is designed to suppress the influence of local image corruption. Extensive experiments are conducted on the challenging benchmarks, and the experimental results demonstrate that the proposed method achieves better results than the state-of-the-art methods for facial landmark localization and occlusion detection 
650 4 |a Journal Article 
700 1 |a Jiankang Deng  |e verfasserin  |4 aut 
700 1 |a Jing Yang  |e verfasserin  |4 aut 
700 1 |a Guangcan Liu  |e verfasserin  |4 aut 
700 1 |a Dacheng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 2 vom: 03. Feb., Seite 797-807  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:2  |g day:03  |g month:02  |g pages:797-807 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2633939  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 2  |b 03  |c 02  |h 797-807