Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program

© 2016 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 4 vom: 05. Feb., Seite 238-249
1. Verfasser: Schlüns, Danny (VerfasserIn)
Weitere Verfasser: Franchini, Mirko, Götz, Andreas W, Neugebauer, Johannes, Jacob, Christoph R, Visscher, Lucas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:News Research Support, Non-U.S. Gov't analytical gradients geometry optimization subsystem density functional theory
LEADER 01000naa a22002652 4500
001 NLM266753965
003 DE-627
005 20231224215221.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24670  |2 doi 
028 5 2 |a pubmed24n0889.xml 
035 |a (DE-627)NLM266753965 
035 |a (NLM)27910112 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schlüns, Danny  |e verfasserin  |4 aut 
245 1 0 |a Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2017 
500 |a Date Revised 18.07.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 Wiley Periodicals, Inc. 
520 |a We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc 
650 4 |a News 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a analytical gradients 
650 4 |a geometry optimization 
650 4 |a subsystem density functional theory 
700 1 |a Franchini, Mirko  |e verfasserin  |4 aut 
700 1 |a Götz, Andreas W  |e verfasserin  |4 aut 
700 1 |a Neugebauer, Johannes  |e verfasserin  |4 aut 
700 1 |a Jacob, Christoph R  |e verfasserin  |4 aut 
700 1 |a Visscher, Lucas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 4 vom: 05. Feb., Seite 238-249  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:4  |g day:05  |g month:02  |g pages:238-249 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24670  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 4  |b 05  |c 02  |h 238-249