|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM266612792 |
003 |
DE-627 |
005 |
20231224214921.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gwat.12463
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0888.xml
|
035 |
|
|
|a (DE-627)NLM266612792
|
035 |
|
|
|a (NLM)27893932
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wood, Warren W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Density-Driven Free-Convection Model for Isotopically Fractionated Geogenic Nitrate in Sabkha Brine
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.12.2017
|
500 |
|
|
|a Date Revised 02.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2016, National Ground Water Association.
|
520 |
|
|
|a Subsurface brines with high nitrate (NO3- ) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ∼525 mg/L (as N), NO3- in the coastal sabkhas of Abu Dhabi is enriched in 15 N (mean δ15 N ∼17‰), which is an enigma. A NO3- solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17 O, δ15 N, and δ18 O data suggest approximately 80 to 90% of the NO3- could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density-driven free-convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near-surface oxygenated NO3- bearing water downward where it encounters reducing conditions and mixes with oxygen-free ascending geologic brines. In this environment, NO3- is partially reduced to nitrogen gas (N2 ), thus enriching the remaining NO3- in heavy isotopes. The isotopically fractionated NO3- and nitrogen gas return to the near-surface oxidizing environment on the upward displacement leg of the free-convection cycle, where the nitrogen gas is released to the atmosphere and new NO3- is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000-year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3-
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Nitrates
|2 NLM
|
650 |
|
7 |
|a Nitrogen Isotopes
|2 NLM
|
650 |
|
7 |
|a Salts
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a brine
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Böhlke, J K
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Ground water
|d 1979
|g 55(2017), 2 vom: 15. März, Seite 199-207
|w (DE-627)NLM098182528
|x 1745-6584
|7 nnns
|
773 |
1 |
8 |
|g volume:55
|g year:2017
|g number:2
|g day:15
|g month:03
|g pages:199-207
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gwat.12463
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 55
|j 2017
|e 2
|b 15
|c 03
|h 199-207
|