Waterloo Exploration Database : New Challenges for Image Quality Assessment Models

The great content diversity of real-world digital images poses a grand challenge to image quality assessment (IQA) models, which are traditionally designed and validated on a handful of commonly used IQA databases with very limited content variation. To test the generalization capability and to faci...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 2 vom: 28. Feb., Seite 1004-1016
1. Verfasser: Kede Ma (VerfasserIn)
Weitere Verfasser: Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, Lei Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266607659
003 DE-627
005 20231224214914.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2631888  |2 doi 
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266607659 
035 |a (NLM)27893392 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kede Ma  |e verfasserin  |4 aut 
245 1 0 |a Waterloo Exploration Database  |b New Challenges for Image Quality Assessment Models 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The great content diversity of real-world digital images poses a grand challenge to image quality assessment (IQA) models, which are traditionally designed and validated on a handful of commonly used IQA databases with very limited content variation. To test the generalization capability and to facilitate the wide usage of IQA techniques in real-world applications, we establish a large-scale database named the Waterloo Exploration Database, which in its current state contains 4744 pristine natural images and 94 880 distorted images created from them. Instead of collecting the mean opinion score for each image via subjective testing, which is extremely difficult if not impossible, we present three alternative test criteria to evaluate the performance of IQA models, namely, the pristine/distorted image discriminability test, the listwise ranking consistency test, and the pairwise preference consistency test (P-test). We compare 20 well-known IQA models using the proposed criteria, which not only provide a stronger test in a more challenging testing environment for existing models, but also demonstrate the additional benefits of using the proposed database. For example, in the P-test, even for the best performing no-reference IQA model, more than 6 million failure cases against the model are "discovered" automatically out of over 1 billion test pairs. Furthermore, we discuss how the new database may be exploited using innovative approaches in the future, to reveal the weaknesses of existing IQA models, to provide insights on how to improve the models, and to shed light on how the next-generation IQA models may be developed. The database and codes are made publicly available at: https://ece.uwaterloo.ca/~k29ma/exploration/ 
650 4 |a Journal Article 
700 1 |a Zhengfang Duanmu  |e verfasserin  |4 aut 
700 1 |a Qingbo Wu  |e verfasserin  |4 aut 
700 1 |a Zhou Wang  |e verfasserin  |4 aut 
700 1 |a Hongwei Yong  |e verfasserin  |4 aut 
700 1 |a Hongliang Li  |e verfasserin  |4 aut 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 2 vom: 28. Feb., Seite 1004-1016  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:2  |g day:28  |g month:02  |g pages:1004-1016 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2631888  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 2  |b 28  |c 02  |h 1004-1016