Spintronic Nanodevices for Bioinspired Computing

Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. - 1998. - 104(2016), 10 vom: 07. Okt., Seite 2024-2039
1. Verfasser: Grollier, Julie (VerfasserIn)
Weitere Verfasser: Querlioz, Damien, Stiles, Mark D
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers
Schlagworte:Journal Article Bioinspired computing magnetic tunnel junctions (MTJs) spintronics
LEADER 01000caa a22002652 4500
001 NLM266509614
003 DE-627
005 20250220224228.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0888.xml 
035 |a (DE-627)NLM266509614 
035 |a (NLM)27881881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Grollier, Julie  |e verfasserin  |4 aut 
245 1 0 |a Spintronic Nanodevices for Bioinspired Computing 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 04.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricating bioinspired hardware is building ultra-high-density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions (MTJs) are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bioinspired computing include tunable fast nonlinear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nanodevices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bioinspired architectures that include one or several types of spintronic nanodevices. In this paper, we show how spintronics can be used for bioinspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges toward fully integrated spintronics complementary metal-oxide-semiconductor (CMOS) bioinspired hardware 
650 4 |a Journal Article 
650 4 |a Bioinspired computing 
650 4 |a magnetic tunnel junctions (MTJs) 
650 4 |a spintronics 
700 1 |a Querlioz, Damien  |e verfasserin  |4 aut 
700 1 |a Stiles, Mark D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the IEEE. Institute of Electrical and Electronics Engineers  |d 1998  |g 104(2016), 10 vom: 07. Okt., Seite 2024-2039  |w (DE-627)NLM098145274  |x 0018-9219  |7 nnns 
773 1 8 |g volume:104  |g year:2016  |g number:10  |g day:07  |g month:10  |g pages:2024-2039 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 104  |j 2016  |e 10  |b 07  |c 10  |h 2024-2039