A Parallel Proximal Algorithm for Anisotropic Total Variation Minimization

Total variation (TV) is a one of the most popular regularizers for stabilizing the solution of ill-posed inverse problems. This paper proposes a novel proximal-gradient algorithm for minimizing TV regularized least-squares cost functionals. Unlike traditional methods that require nested iterations f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 2 vom: 03. Feb., Seite 539-548
1. Verfasser: Kamilov, Ulugbek S (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266449727
003 DE-627
005 20231224214548.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266449727 
035 |a (NLM)27875224 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kamilov, Ulugbek S  |e verfasserin  |4 aut 
245 1 2 |a A Parallel Proximal Algorithm for Anisotropic Total Variation Minimization 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Total variation (TV) is a one of the most popular regularizers for stabilizing the solution of ill-posed inverse problems. This paper proposes a novel proximal-gradient algorithm for minimizing TV regularized least-squares cost functionals. Unlike traditional methods that require nested iterations for computing the proximal step of TV, our algorithm approximates the latter with several simple proximals that have closed form solutions. We theoretically prove that the proposed parallel proximal method achieves the TV solution with arbitrarily high precision at a global rate of converge that is equivalent to the fast proximal-gradient methods. The results in this paper have the potential to enhance the applicability of TV for solving very large-scale imaging inverse problems 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 2 vom: 03. Feb., Seite 539-548  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:2  |g day:03  |g month:02  |g pages:539-548 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 2  |b 03  |c 02  |h 539-548