Image Registration and Change Detection under Rolling Shutter Motion Blur

In this paper, we address the problem of registering a distorted image and a reference image of the same scene by estimating the camera motion that had caused the distortion. We simultaneously detect the regions of changes between the two images. We attend to the coalesced effect of rolling shutter...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 10 vom: 03. Okt., Seite 1959-1972
1. Verfasser: Rengarajan, Vijay (VerfasserIn)
Weitere Verfasser: Rajagopalan, Ambasamudram Narayanan, Aravind, Rangarajan, Seetharaman, Guna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM266449662
003 DE-627
005 20231224214548.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2630687  |2 doi 
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266449662 
035 |a (NLM)27875216 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rengarajan, Vijay  |e verfasserin  |4 aut 
245 1 0 |a Image Registration and Change Detection under Rolling Shutter Motion Blur 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.11.2018 
500 |a Date Revised 23.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the problem of registering a distorted image and a reference image of the same scene by estimating the camera motion that had caused the distortion. We simultaneously detect the regions of changes between the two images. We attend to the coalesced effect of rolling shutter and motion blur that occurs frequently in moving CMOS cameras. We first model a general image formation framework for a 3D scene following a layered approach in the presence of rolling shutter and motion blur. We then develop an algorithm which performs layered registration to detect changes. This algorithm includes an optimisation problem that leverages the sparsity of the camera trajectory in the pose space and the sparsity of changes in the spatial domain. We create a synthetic dataset for change detection in the presence of motion blur and rolling shutter effect covering different types of camera motion for both planar and 3D scenes. We compare our method with existing registration methods and also show several real examples captured with CMOS cameras 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Rajagopalan, Ambasamudram Narayanan  |e verfasserin  |4 aut 
700 1 |a Aravind, Rangarajan  |e verfasserin  |4 aut 
700 1 |a Seetharaman, Guna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 10 vom: 03. Okt., Seite 1959-1972  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:10  |g day:03  |g month:10  |g pages:1959-1972 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2630687  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 10  |b 03  |c 10  |h 1959-1972