Local Submodularization for Binary Pairwise Energies

Many computer vision problems require optimization of binary non-submodular energies. We propose a general optimization framework based on local submodular approximations (LSA). Unlike standard LP relaxation methods that linearize the whole energy globally, our approach iteratively approximates the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 10 vom: 03. Okt., Seite 1985-1999
1. Verfasser: Gorelick, Lena (VerfasserIn)
Weitere Verfasser: Boykov, Yuri, Veksler, Olga, Ayed, Ismail Ben, Delong, Andrew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM266449654
003 DE-627
005 20231224214548.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2630686  |2 doi 
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266449654 
035 |a (NLM)27875215 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gorelick, Lena  |e verfasserin  |4 aut 
245 1 0 |a Local Submodularization for Binary Pairwise Energies 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2019 
500 |a Date Revised 08.03.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Many computer vision problems require optimization of binary non-submodular energies. We propose a general optimization framework based on local submodular approximations (LSA). Unlike standard LP relaxation methods that linearize the whole energy globally, our approach iteratively approximates the energy locally. On the other hand, unlike standard local optimization methods (e.g., gradient descent or projection techniques) we use non-linear submodular approximations and optimize them without leaving the domain of integer solutions. We discuss two specific LSA algorithms based on trust region and auxiliary function principles, LSA-TR and LSA-AUX. The proposed methods obtain state-of-the-art results on a wide range of applications such as binary deconvolution, curvature regularization, inpainting, segmentation with repulsion and two types of shape priors. Finally, we discuss a move-making extension to the LSA-TR approach. While our paper is focused on pairwise energies, our ideas extend to higher-order problems. The code is available online 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Boykov, Yuri  |e verfasserin  |4 aut 
700 1 |a Veksler, Olga  |e verfasserin  |4 aut 
700 1 |a Ayed, Ismail Ben  |e verfasserin  |4 aut 
700 1 |a Delong, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 10 vom: 03. Okt., Seite 1985-1999  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:10  |g day:03  |g month:10  |g pages:1985-1999 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2630686  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 10  |b 03  |c 10  |h 1985-1999