Visualizing Shape Deformations with Variation of Geometric Spectrum

This paper presents a novel approach based on spectral geometry to quantify and visualize non-isometric deformations of 3D surfaces by mapping two manifolds. The proposed method can determine multi-scale, non-isometric deformations through the variation of Laplace-Beltrami spectrum of two shapes. Gi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 23(2017), 1 vom: 02. Jan., Seite 721-730
1. Verfasser: Hu, Jiaxi (VerfasserIn)
Weitere Verfasser: Hamidian, Hajar, Zhong, Zichun, Hua, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM266449360
003 DE-627
005 20250220223006.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0888.xml 
035 |a (DE-627)NLM266449360 
035 |a (NLM)27875186 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Jiaxi  |e verfasserin  |4 aut 
245 1 0 |a Visualizing Shape Deformations with Variation of Geometric Spectrum 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel approach based on spectral geometry to quantify and visualize non-isometric deformations of 3D surfaces by mapping two manifolds. The proposed method can determine multi-scale, non-isometric deformations through the variation of Laplace-Beltrami spectrum of two shapes. Given two triangle meshes, the spectra can be varied from one to another with a scale function defined on each vertex. The variation is expressed as a linear interpolation of eigenvalues of the two shapes. In each iteration step, a quadratic programming problem is constructed, based on our derived spectrum variation theorem and smoothness energy constraint, to compute the spectrum variation. The derivation of the scale function is the solution of such a problem. Therefore, the final scale function can be solved by integral of the derivation from each step, which, in turn, quantitatively describes non-isometric deformations between two shapes. To evaluate the method, we conduct extensive experiments on synthetic and real data. We employ real epilepsy patient imaging data to quantify the shape variation between the left and right hippocampi in epileptic brains. In addition, we use longitudinal Alzheimer data to compare the shape deformation of diseased and healthy hippocampus. In order to show the accuracy and effectiveness of the proposed method, we also compare it with spatial registration-based methods, e.g., non-rigid Iterative Closest Point (ICP) and voxel-based method. These experiments demonstrate the advantages of our method 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Hamidian, Hajar  |e verfasserin  |4 aut 
700 1 |a Zhong, Zichun  |e verfasserin  |4 aut 
700 1 |a Hua, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 23(2017), 1 vom: 02. Jan., Seite 721-730  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:02  |g month:01  |g pages:721-730 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 02  |c 01  |h 721-730