Evaluation of Graph Sampling : A Visualization Perspective

Graph sampling is frequently used to address scalability issues when analyzing large graphs. Many algorithms have been proposed to sample graphs, and the performance of these algorithms has been quantified through metrics based on graph structural properties preserved by the sampling: degree distrib...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 1 vom: 03. Jan., Seite 401-410
1. Verfasser: Wu, Yanhong (VerfasserIn)
Weitere Verfasser: Cao, Nan, Archambault, Daniel, Shen, Qiaomu, Qu, Huamin, Cui, Weiwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM266449069
003 DE-627
005 20231224214547.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266449069 
035 |a (NLM)27875156 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yanhong  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of Graph Sampling  |b A Visualization Perspective 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph sampling is frequently used to address scalability issues when analyzing large graphs. Many algorithms have been proposed to sample graphs, and the performance of these algorithms has been quantified through metrics based on graph structural properties preserved by the sampling: degree distribution, clustering coefficient, and others. However, a perspective that is missing is the impact of these sampling strategies on the resultant visualizations. In this paper, we present the results of three user studies that investigate how sampling strategies influence node-link visualizations of graphs. In particular, five sampling strategies widely used in the graph mining literature are tested to determine how well they preserve visual features in node-link diagrams. Our results show that depending on the sampling strategy used different visual features are preserved. These results provide a complimentary view to metric evaluations conducted in the graph mining literature and provide an impetus to conduct future visualization studies 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cao, Nan  |e verfasserin  |4 aut 
700 1 |a Archambault, Daniel  |e verfasserin  |4 aut 
700 1 |a Shen, Qiaomu  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
700 1 |a Cui, Weiwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 1 vom: 03. Jan., Seite 401-410  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:03  |g month:01  |g pages:401-410 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 03  |c 01  |h 401-410