TopicLens : Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections

Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 1 vom: 03. Jan., Seite 151-160
1. Verfasser: Kim, Minjeong (VerfasserIn)
Weitere Verfasser: Kang, Kyeongpil, Park, Deokgun, Choo, Jaegul, Elmqvist, Niklas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM266448909
003 DE-627
005 20231224214547.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266448909 
035 |a (NLM)27875138 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Minjeong  |e verfasserin  |4 aut 
245 1 0 |a TopicLens  |b Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2018 
500 |a Date Revised 22.10.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual analytics workflow. Instead, most such systems are limited to utilizing a fixed, initial set of topics. Motivated by this gap in the literature, we propose a novel interaction technique called TopicLens that allows a user to dynamically explore data through a lens interface where topic modeling and the corresponding 2D embedding are efficiently computed on the fly. To support this interaction in real time while maintaining view consistency, we propose a novel efficient topic modeling method and a semi-supervised 2D embedding algorithm. Our work is based on improving state-of-the-art methods such as nonnegative matrix factorization and t-distributed stochastic neighbor embedding. Furthermore, we have built a web-based visual analytics system integrated with TopicLens. We use this system to measure the performance and the visualization quality of our proposed methods. We provide several scenarios showcasing the capability of TopicLens using real-world datasets 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kang, Kyeongpil  |e verfasserin  |4 aut 
700 1 |a Park, Deokgun  |e verfasserin  |4 aut 
700 1 |a Choo, Jaegul  |e verfasserin  |4 aut 
700 1 |a Elmqvist, Niklas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 1 vom: 03. Jan., Seite 151-160  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:03  |g month:01  |g pages:151-160 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 03  |c 01  |h 151-160