The effect of plant water storage on water fluxes within the coupled soil-plant system

© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 213(2017), 3 vom: 01. Feb., Seite 1093-1106
1. Verfasser: Huang, Cheng-Wei (VerfasserIn)
Weitere Verfasser: Domec, Jean-Christophe, Ward, Eric J, Duman, Tomer, Manoli, Gabriele, Parolari, Anthony J, Katul, Gabriel G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article drought resilience hydraulic redistribution leaf-level gas exchange nocturnal transpiration plant water storage root water uptake Soil Water 059QF0KO0R mehr... Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM266404197
003 DE-627
005 20231224214439.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.14273  |2 doi 
028 5 2 |a pubmed24n0888.xml 
035 |a (DE-627)NLM266404197 
035 |a (NLM)27870064 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Cheng-Wei  |e verfasserin  |4 aut 
245 1 4 |a The effect of plant water storage on water fluxes within the coupled soil-plant system 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.02.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. 
520 |a In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress 
650 4 |a Journal Article 
650 4 |a drought resilience 
650 4 |a hydraulic redistribution 
650 4 |a leaf-level gas exchange 
650 4 |a nocturnal transpiration 
650 4 |a plant water storage 
650 4 |a root water uptake 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Domec, Jean-Christophe  |e verfasserin  |4 aut 
700 1 |a Ward, Eric J  |e verfasserin  |4 aut 
700 1 |a Duman, Tomer  |e verfasserin  |4 aut 
700 1 |a Manoli, Gabriele  |e verfasserin  |4 aut 
700 1 |a Parolari, Anthony J  |e verfasserin  |4 aut 
700 1 |a Katul, Gabriel G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 213(2017), 3 vom: 01. Feb., Seite 1093-1106  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:213  |g year:2017  |g number:3  |g day:01  |g month:02  |g pages:1093-1106 
856 4 0 |u http://dx.doi.org/10.1111/nph.14273  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 213  |j 2017  |e 3  |b 01  |c 02  |h 1093-1106