Weakly Supervised Deep Matrix Factorization for Social Image Understanding

The number of images associated with weakly supervised user-provided tags has increased dramatically in recent years. User-provided tags are incomplete, subjective and noisy. In this paper, we focus on the problem of social image understanding, i.e., tag refinement, tag assignment, and image retriev...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 04. Jan., Seite 276-288
Auteur principal: Li, Zechao (Auteur)
Autres auteurs: Tang, Jinhui
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM266084028
003 DE-627
005 20250220211524.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0886.xml 
035 |a (DE-627)NLM266084028 
035 |a (NLM)27831878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zechao  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised Deep Matrix Factorization for Social Image Understanding 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The number of images associated with weakly supervised user-provided tags has increased dramatically in recent years. User-provided tags are incomplete, subjective and noisy. In this paper, we focus on the problem of social image understanding, i.e., tag refinement, tag assignment, and image retrieval. Different from previous work, we propose a novel weakly supervised deep matrix factorization algorithm, which uncovers the latent image representations and tag representations embedded in the latent subspace by collaboratively exploring the weakly supervised tagging information, the visual structure, and the semantic structure. Due to the well-known semantic gap, the hidden representations of images are learned by a hierarchical model, which are progressively transformed from the visual feature space. It can naturally embed new images into the subspace using the learned deep architecture. The semantic and visual structures are jointly incorporated to learn a semantic subspace without overfitting the noisy, incomplete, or subjective tags. Besides, to remove the noisy or redundant visual features, a sparse model is imposed on the transformation matrix of the first layer in the deep architecture. Finally, a unified optimization problem with a well-defined objective function is developed to formulate the proposed problem and solved by a gradient descent procedure with curvilinear search. Extensive experiments on real-world social image databases are conducted on the tasks of image understanding: image tag refinement, assignment, and retrieval. Encouraging results are achieved with comparison with the state-of-the-art algorithms, which demonstrates the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 04. Jan., Seite 276-288  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:04  |g month:01  |g pages:276-288 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 04  |c 01  |h 276-288