A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling

Robust organ segmentation is a prerequisite for computer-aided diagnosis, quantitative imaging analysis, pathology detection, and surgical assistance. For organs with high anatomical variability (e.g., the pancreas), previous segmentation approaches report low accuracies, compared with well-studied...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 04. Jan., Seite 386-399
1. Verfasser: Farag, Amal (VerfasserIn)
Weitere Verfasser: Le Lu, Roth, Holger R, Liu, Jiamin, Turkbey, Evrim, Summers, Ronald M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266083943
003 DE-627
005 20231224213713.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2624198  |2 doi 
028 5 2 |a pubmed24n0886.xml 
035 |a (DE-627)NLM266083943 
035 |a (NLM)27831881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Farag, Amal  |e verfasserin  |4 aut 
245 1 2 |a A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Robust organ segmentation is a prerequisite for computer-aided diagnosis, quantitative imaging analysis, pathology detection, and surgical assistance. For organs with high anatomical variability (e.g., the pancreas), previous segmentation approaches report low accuracies, compared with well-studied organs, such as the liver or heart. We present an automated bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans. The method generates a hierarchical cascade of information propagation by classifying image patches at different resolutions and cascading (segments) superpixels. The system contains four steps: 1) decomposition of CT slice images into a set of disjoint boundary-preserving superpixels; 2) computation of pancreas class probability maps via dense patch labeling; 3) superpixel classification by pooling both intensity and probability features to form empirical statistics in cascaded random forest frameworks; and 4) simple connectivity based post-processing. Dense image patch labeling is conducted using two methods: efficient random forest classification on image histogram, location and texture features; and more expensive (but more accurate) deep convolutional neural network classification, on larger image windows (i.e., with more spatial contexts). Over-segmented 2-D CT slices by the simple linear iterative clustering approach are adopted through model/parameter calibration and labeled at the superpixel level for positive (pancreas) or negative (non-pancreas or background) classes. The proposed method is evaluated on a data set of 80 manually segmented CT volumes, using six-fold cross-validation. Its performance equals or surpasses other state-of-the-art methods (evaluated by "leave-one-patient-out"), with a dice coefficient of 70.7% and Jaccard index of 57.9%. In addition, the computational efficiency has improved significantly, requiring a mere 6 ~ 8 min per testing case, versus ≥ 10 h for other methods. The segmentation framework using deep patch labeling confidences is also more numerically stable, as reflected in the smaller performance metric standard deviations. Finally, we implement a multi-atlas label fusion (MALF) approach for pancreas segmentation using the same data set. Under six-fold cross-validation, our bottom-up segmentation method significantly outperforms its MALF counterpart: 70.7±13.0% versus 52.51±20.84% in dice coefficients 
650 4 |a Journal Article 
700 1 |a Le Lu  |e verfasserin  |4 aut 
700 1 |a Roth, Holger R  |e verfasserin  |4 aut 
700 1 |a Liu, Jiamin  |e verfasserin  |4 aut 
700 1 |a Turkbey, Evrim  |e verfasserin  |4 aut 
700 1 |a Summers, Ronald M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 04. Jan., Seite 386-399  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:04  |g month:01  |g pages:386-399 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2624198  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 04  |c 01  |h 386-399