EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis

Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators ba...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 12 vom: 08. Dez., Seite 2402-2415
1. Verfasser: Gebru, Israel Dejene (VerfasserIn)
Weitere Verfasser: Alameda-Pineda, Xavier, Forbes, Florence, Horaud, Radu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266021611
003 DE-627
005 20231224213554.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2522425  |2 doi 
028 5 2 |a pubmed24n0886.xml 
035 |a (DE-627)NLM266021611 
035 |a (NLM)27824582 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gebru, Israel Dejene  |e verfasserin  |4 aut 
245 1 0 |a EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.06.2017 
500 |a Date Revised 08.09.2017 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis 
650 4 |a Journal Article 
700 1 |a Alameda-Pineda, Xavier  |e verfasserin  |4 aut 
700 1 |a Forbes, Florence  |e verfasserin  |4 aut 
700 1 |a Horaud, Radu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 12 vom: 08. Dez., Seite 2402-2415  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:12  |g day:08  |g month:12  |g pages:2402-2415 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2522425  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 12  |b 08  |c 12  |h 2402-2415