|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM266021611 |
003 |
DE-627 |
005 |
20231224213554.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2016.2522425
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0886.xml
|
035 |
|
|
|a (DE-627)NLM266021611
|
035 |
|
|
|a (NLM)27824582
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gebru, Israel Dejene
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.06.2017
|
500 |
|
|
|a Date Revised 08.09.2017
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Alameda-Pineda, Xavier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Forbes, Florence
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Horaud, Radu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 38(2016), 12 vom: 08. Dez., Seite 2402-2415
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2016
|g number:12
|g day:08
|g month:12
|g pages:2402-2415
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2016.2522425
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2016
|e 12
|b 08
|c 12
|h 2402-2415
|