Dynamic Scene Recognition with Complementary Spatiotemporal Features

This paper presents Dynamically Pooled Complementary Features (DPCF), a unified approach to dynamic scene recognition that analyzes a short video clip in terms of its spatial, temporal and color properties. The complementarity of these properties is preserved through all main steps of processing, in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 12 vom: 08. Dez., Seite 2389-2401
1. Verfasser: Feichtenhofer, Christoph (VerfasserIn)
Weitere Verfasser: Pinz, Axel, Wildes, Richard P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266021603
003 DE-627
005 20231224213554.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2526008  |2 doi 
028 5 2 |a pubmed24n0886.xml 
035 |a (DE-627)NLM266021603 
035 |a (NLM)27824581 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feichtenhofer, Christoph  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Scene Recognition with Complementary Spatiotemporal Features 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.12.2017 
500 |a Date Revised 12.12.2017 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents Dynamically Pooled Complementary Features (DPCF), a unified approach to dynamic scene recognition that analyzes a short video clip in terms of its spatial, temporal and color properties. The complementarity of these properties is preserved through all main steps of processing, including primitive feature extraction, coding and pooling. In the feature extraction step, spatial orientations capture static appearance, spatiotemporal oriented energies capture image dynamics and color statistics capture chromatic information. Subsequently, primitive features are encoded into a mid-level representation that has been learned for the task of dynamic scene recognition. Finally, a novel dynamic spacetime pyramid is introduced. This dynamic pooling approach can handle both global as well as local motion by adapting to the temporal structure, as guided by pooling energies. The resulting system provides online recognition of dynamic scenes that is thoroughly evaluated on the two current benchmark datasets and yields best results to date on both datasets. In-depth analysis reveals the benefits of explicitly modeling feature complementarity in combination with the dynamic spacetime pyramid, indicating that this unified approach should be well-suited to many areas of video analysis 
650 4 |a Journal Article 
700 1 |a Pinz, Axel  |e verfasserin  |4 aut 
700 1 |a Wildes, Richard P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 12 vom: 08. Dez., Seite 2389-2401  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:12  |g day:08  |g month:12  |g pages:2389-2401 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2526008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 12  |b 08  |c 12  |h 2389-2401