Ultrasonic Reverberation Clutter Suppression Using Multiphase Apodization With Cross Correlation

Despite numerous recent advances in medical ultrasound imaging, reverberation clutter from near-field anatomical structures, such as the abdominal wall, ribs, and tissue layers, is one of the major sources of ultrasound image quality degradation. Reverberation clutter signals are undesirable echoes,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 63(2016), 11 vom: 08. Nov., Seite 1947-1956
1. Verfasser: Shin, Junseob (VerfasserIn)
Weitere Verfasser: Chen, Yu, Malhi, Harshawn, Yen, Jesse T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
Beschreibung
Zusammenfassung:Despite numerous recent advances in medical ultrasound imaging, reverberation clutter from near-field anatomical structures, such as the abdominal wall, ribs, and tissue layers, is one of the major sources of ultrasound image quality degradation. Reverberation clutter signals are undesirable echoes, which arise as a result of multiple reflections of acoustic waves between the boundaries of these structures, and cause fill-in to lower image contrast. In order to mitigate the undesirable reverberation clutter effects, we present, in this paper, a new beamforming technique called multiphase apodization with cross correlation (MPAX), which is an improved version of our previous technique, dual apodization with cross correlation (DAX). While DAX uses a single pair of complementary amplitude apodizations, MPAX utilizes multiple pairs of complementary sinusoidal phase apodizations to intentionally introduce grating lobes from which an improved weighting matrix can be produced to effectively suppress reverberation clutter. Our experimental sponge phantom and preliminary in vivo results from human subjects presented in this paper suggest that MPAX is a highly effective technique in suppressing reverberation clutter and has great potential for producing high contrast ultrasound images for more accurate diagnosis in clinics
Beschreibung:Date Completed 26.09.2017
Date Revised 26.03.2024
published: Print
Citation Status MEDLINE
ISSN:1525-8955