|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM265904722 |
003 |
DE-627 |
005 |
20231224213322.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0886.xml
|
035 |
|
|
|a (DE-627)NLM265904722
|
035 |
|
|
|a (NLM)27811081
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Muench, Miriam
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.11.2017
|
500 |
|
|
|a Date Revised 13.11.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a Abiotic and biotic stresses are often characterized by an induction of reactive electrophile species (RES) such as the jasmonate 12-oxo-phytodienoic acid (OPDA) or the structurally related phytoprostanes. Previously, RES oxylipins have been shown massively to induce heat-shock-response (HSR) genes including HSP101 chaperones. Moreover, jasmonates have been reported to play a role in basal thermotolerance. We show that representative HSR marker genes are strongly induced by RES oxylipins through the four master regulator transcription factors HSFA1a, b, d, and e essential for short-term adaptation to heat stress in Arabidopsis. When compared with Arabidopsis seedlings treated at the optimal acclimation temperature of 37 °C, the exogenous application of RES oxylipins at 20 °C induced a much weaker induction of HSP101 at both the gene and protein expression levels which, however, was not sufficient to confer short-term acquired thermotolerance. Moreover, jasmonate-deficient mutant lines displayed a wild-type-like HSR and were not compromised in acquiring thermotolerance. Hence, the OPDA- and RES oxylipin-induced HSR is not sufficient to protect seedlings from severe heat stress but may help plants to cope better with stresses associated with protein unfolding by inducing a battery of chaperones in the absence of heat
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a 12-oxo-phytodienoic acid
|
650 |
|
4 |
|a acquired thermotolerance
|
650 |
|
4 |
|a heat stress
|
650 |
|
4 |
|a jasmonates
|
650 |
|
4 |
|a phytoprostanes
|
650 |
|
4 |
|a reactive electrophilic species
|
650 |
|
4 |
|a unfolded protein response.
|
650 |
|
7 |
|a Arabidopsis Proteins
|2 NLM
|
650 |
|
7 |
|a Cyclopentanes
|2 NLM
|
650 |
|
7 |
|a DNA-Binding Proteins
|2 NLM
|
650 |
|
7 |
|a Heat Shock Transcription Factors
|2 NLM
|
650 |
|
7 |
|a Heat-Shock Proteins
|2 NLM
|
650 |
|
7 |
|a Oxylipins
|2 NLM
|
650 |
|
7 |
|a Plant Growth Regulators
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Transcription Factors
|2 NLM
|
650 |
|
7 |
|a jasmonic acid
|2 NLM
|
650 |
|
7 |
|a 6RI5N05OWW
|2 NLM
|
700 |
1 |
|
|a Hsin, Chih-Hsuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ferber, Elena
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Berger, Susanne
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mueller, Martin J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 67(2016), 21 vom: 03. Nov., Seite 6139-6148
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:67
|g year:2016
|g number:21
|g day:03
|g month:11
|g pages:6139-6148
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 67
|j 2016
|e 21
|b 03
|c 11
|h 6139-6148
|