The efficient physiological strategy of a tomato landrace in response to short-term salinity stress

Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 109(2016) vom: 01. Dez., Seite 262-272
1. Verfasser: Moles, Tommaso Michele (VerfasserIn)
Weitere Verfasser: Pompeiano, Antonio, Huarancca Reyes, Thais, Scartazza, Andrea, Guglielminetti, Lorenzo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Antioxidants Chlorophyll a fluorescence Gas exchange Salt tolerance Soluble sugars Tomato landrace Chlorophyll 1406-65-1 Carbon Dioxide mehr... 142M471B3J Chlorophyll A YF5Q9EJC8Y
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Landraces represent an important part of the biodiversity well-adapted under limiting environmental conditions. We investigated the response of two Southern Italy tomato landraces, the well-known San Marzano (our commercial standard) and a local accession called "Ciettaicale", to different levels of sodium chloride in water irrigation (from 0 up to 600 mM) for a short-time exposure (one week). The combination of the chlorophyll a fluorescence and gas exchange analyses suggested that Ciettaicale maintained a higher efficiency of photosystem II (PSII) photochemistry and CO2 utilization at high salinity concentrations than San Marzano. Stomatal and non-stomatal limitations occurred in San Marzano according to the reduction of maximum efficiency of PSII photochemistry and the increase of intercellular CO2 concentration. Higher Na+/K+ ratio and higher concentration of total soluble sugars contributed to non-stomatal limitations in San Marzano leaves. These effects were significantly less evident in Ciettaicale. We also observed changes in total antioxidant capacity and leaf pigment content that emphasized the occurrence of modifications in the photosynthetic apparatus according to salt gradient. The more efficient assimilates supply and an integrated root protection system provided by sugars and antioxidants can explain the significantly higher root/shoot ratio in Ciettaicale. Overall, our results suggest that a comprehensive assessment of salinity tolerance in a genotypes comparison could be also obtained evaluating plant response to high salinity levels at early vegetative stage. In addition, further studies will be carried out in order to evaluate the possibility of using Ciettaicale in tomato improvement programs
Beschreibung:Date Completed 10.04.2017
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2016.10.008