|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM265497094 |
003 |
DE-627 |
005 |
20231224212419.0 |
007 |
tu |
008 |
231224s2016 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0885.xml
|
035 |
|
|
|a (DE-627)NLM265497094
|
035 |
|
|
|a (NLM)27763349
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Soltan, Sahar
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.11.2017
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In the present study, silicon dioxide (SiO2) nanoparticles were loaded to titanium dioxide (TiO2) nano-particles by sol-gel method to make a high porosity photocatalyst nano-hybrid. These photocatalysts were synthesized using titanium tetrachloride and tetraethyl orthosilicate as titanium and silicon sources, respectively, and characterized by X-ray powder diffraction (XRD) and scanning electron microscope methods. Subsequently, the optimizations of the component and operation conditions were investigated. Then, nano-sized TiO2 and TiO2-SiO2 were supported on concrete bricks by the dip coating process. The photocatalytic activity of nano photocatalysts under UV irradiation was examined by studying the decomposition of aqueous solutions of furfural and acetophenone (10 mg/L) as model of organic pollutants to CO2 and H2O at room temperature. A decrease in the concentration of these pollutants was assayed by using UV-visible absorption, gas chromatography technique, and chemical oxygen demand. The removal of these pollutants from water using the concrete-supported photocatalysts under UV irradiation was performed with a greater efficiency, which does not require an additional separation stage to recover the catalyst. Therefore, it would be applicable to use in industrial wastewater treatment at room temperature and atmospheric pressure within the optimized pH range
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Acetophenones
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a titanium dioxide
|2 NLM
|
650 |
|
7 |
|a 15FIX9V2JP
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
650 |
|
7 |
|a Titanium
|2 NLM
|
650 |
|
7 |
|a D1JT611TNE
|2 NLM
|
650 |
|
7 |
|a Furaldehyde
|2 NLM
|
650 |
|
7 |
|a DJ1HGI319P
|2 NLM
|
650 |
|
7 |
|a acetophenone
|2 NLM
|
650 |
|
7 |
|a RK493WHV10
|2 NLM
|
700 |
1 |
|
|a Jafari, Hoda
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Afshar, Shahrara
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zabihi, Omid
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 74(2016), 7 vom: 20. Okt., Seite 1689-1697
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:74
|g year:2016
|g number:7
|g day:20
|g month:10
|g pages:1689-1697
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 74
|j 2016
|e 7
|b 20
|c 10
|h 1689-1697
|