Diatom growth responses to photoperiod and light are predictable from diel reductant generation

© 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 53(2017), 1 vom: 18. Feb., Seite 95-107
1. Verfasser: Li, Gang (VerfasserIn)
Weitere Verfasser: Talmy, David, Campbell, Douglas A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. RUBISCO Thalassiosira cell size diatom electron transport growth photoperiod mehr... photosystem II Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.
Light drives phytoplankton productivity, so phytoplankton must exploit variable intensities and durations of light exposure, depending upon season, latitude, and depth. We analyzed the growth, photophysiology and composition of small, Thalassiosira pseudonana, and large, Thalassiosira punctigera, centric diatoms from temperate, coastal marine habitats, responding to a matrix of photoperiods and growth light intensities. T. pseudonana showed fastest growth rates under long photoperiods and low to moderate light intensities, while the larger T. punctigera showed fastest growth rates under short photoperiods and higher light intensities. Photosystem II function and content responded primarily to instantaneous growth light intensities during the photoperiod, while diel carbon fixation and RUBISCO content responded more to photoperiod duration than to instantaneous light intensity. Changing photoperiods caused species-specific changes in the responses of photochemical yield (e- /photon) to growth light intensity. These photophysiological variables showed complex responses to photoperiod and to growth light intensity. Growth rate also showed complex responses to photoperiod and growth light intensity. But these complex responses resolved into a close relation between growth rate and the cumulative daily generation of reductant, across the matrix of photoperiods and light intensities
Beschreibung:Date Completed 30.01.2018
Date Revised 09.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1529-8817
DOI:10.1111/jpy.12483