PatchMatch Filter : Edge-Aware Filtering Meets Randomized Search for Visual Correspondence

Though many tasks in computer vision can be formulated elegantly as pixel-labeling problems, a typical challenge discouraging such a discrete formulation is often due to computational efficiency. Recent studies on fast cost volume filtering based on efficient edge-aware filters provide a fast altern...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 14. Sept., Seite 1866-1879
1. Verfasser: Lu, Jiangbo (VerfasserIn)
Weitere Verfasser: Li, Yu, Yang, Hongsheng, Min, Dongbo, Eng, Weiyong, Do, Minh N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26530198X
003 DE-627
005 20231224212000.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2616391  |2 doi 
028 5 2 |a pubmed24n0884.xml 
035 |a (DE-627)NLM26530198X 
035 |a (NLM)27740475 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Jiangbo  |e verfasserin  |4 aut 
245 1 0 |a PatchMatch Filter  |b Edge-Aware Filtering Meets Randomized Search for Visual Correspondence 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2018 
500 |a Date Revised 15.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Though many tasks in computer vision can be formulated elegantly as pixel-labeling problems, a typical challenge discouraging such a discrete formulation is often due to computational efficiency. Recent studies on fast cost volume filtering based on efficient edge-aware filters provide a fast alternative to solve discrete labeling problems, with the complexity independent of the support window size. However, these methods still have to step through the entire cost volume exhaustively, which makes the solution speed scale linearly with the label space size. When the label space is huge or even infinite, which is often the case for (subpixel-accurate) stereo and optical flow estimation, their computational complexity becomes quickly unacceptable. Developed to search approximate nearest neighbors rapidly, the PatchMatch method can significantly reduce the complexity dependency on the search space size. But, its pixel-wise randomized search and fragmented data access within the 3D cost volume seriously hinder the application of efficient cost slice filtering. This paper presents a generic and fast computational framework for general multi-labeling problems called PatchMatch Filter (PMF). We explore effective and efficient strategies to weave together these two fundamental techniques developed in isolation, i.e., PatchMatch-based randomized search and efficient edge-aware image filtering. By decompositing an image into compact superpixels, we also propose superpixel-based novel search strategies that generalize and improve the original PatchMatch method. Further motivated to improve the regularization strength, we propose a simple yet effective cross-scale consistency constraint, which handles labeling estimation for large low-textured regions more reliably than a single-scale PMF algorithm. Focusing on dense correspondence field estimation in this paper, we demonstrate PMF's applications in stereo and optical flow. Our PMF methods achieve top-tier correspondence accuracy but run much faster than other related competing methods, often giving over 10-100 times speedup 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Yu  |e verfasserin  |4 aut 
700 1 |a Yang, Hongsheng  |e verfasserin  |4 aut 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Eng, Weiyong  |e verfasserin  |4 aut 
700 1 |a Do, Minh N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 9 vom: 14. Sept., Seite 1866-1879  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:9  |g day:14  |g month:09  |g pages:1866-1879 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2616391  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 9  |b 14  |c 09  |h 1866-1879