Interferences in Match Kernels

We consider the design of an image representation that embeds and aggregates a set of local descriptors into a single vector. Popular representations of this kind include the bag-of-visual-words, the Fisher vector and the VLAD. When two such image representations are compared with the dot-product, t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 01. Sept., Seite 1797-1810
1. Verfasser: Murray, Naila (VerfasserIn)
Weitere Verfasser: Jegou, Herve, Perronnin, Florent, Zisserman, Andrew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM265169240
003 DE-627
005 20250220182155.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2615621  |2 doi 
028 5 2 |a pubmed25n0883.xml 
035 |a (DE-627)NLM265169240 
035 |a (NLM)27723578 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Murray, Naila  |e verfasserin  |4 aut 
245 1 0 |a Interferences in Match Kernels 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2018 
500 |a Date Revised 15.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We consider the design of an image representation that embeds and aggregates a set of local descriptors into a single vector. Popular representations of this kind include the bag-of-visual-words, the Fisher vector and the VLAD. When two such image representations are compared with the dot-product, the image-to-image similarity can be interpreted as a match kernel. In match kernels, one has to deal with interference, i.e., with the fact that even if two descriptors are unrelated, their matching score may contribute to the overall similarity. We formalise this problem and propose two related solutions, both aimed at equalising the individual contributions of the local descriptors in the final representation. These methods modify the aggregation stage by including a set of per-descriptor weights. They differ by the objective function that is optimised to compute those weights. The first is a "democratisation" strategy that aims at equalising the relative importance of each descriptor in the set comparison metric. The second one involves equalising the match of a single descriptor to the aggregated vector. These concurrent methods give a substantial performance boost over the state of the art in image search with short or mid-size vectors, as demonstrated by our experiments on standard public image retrieval benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jegou, Herve  |e verfasserin  |4 aut 
700 1 |a Perronnin, Florent  |e verfasserin  |4 aut 
700 1 |a Zisserman, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 9 vom: 01. Sept., Seite 1797-1810  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:9  |g day:01  |g month:09  |g pages:1797-1810 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2615621  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 9  |b 01  |c 09  |h 1797-1810