DASC : Robust Dense Descriptor for Multi-Modal and Multi-Spectral Correspondence Estimation

Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding a reliable correspondence between multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and geometric variations. In this paper, we propo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 01. Sept., Seite 1712-1729
1. Verfasser: Kim, Seungryong (VerfasserIn)
Weitere Verfasser: Min, Dongbo, Ham, Bumsub, Do, Minh N, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM265169208
003 DE-627
005 20250220182154.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2615619  |2 doi 
028 5 2 |a pubmed25n0883.xml 
035 |a (DE-627)NLM265169208 
035 |a (NLM)27723577 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Seungryong  |e verfasserin  |4 aut 
245 1 0 |a DASC  |b Robust Dense Descriptor for Multi-Modal and Multi-Spectral Correspondence Estimation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2018 
500 |a Date Revised 15.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding a reliable correspondence between multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and geometric variations. In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate dense multi-modal and multi-spectral correspondences. Based on an observation that self-similarity existing within images is robust to imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that effectively leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a novel multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding performance of the DASC and GI-DASC in many cases of dense multi-modal and multi-spectral correspondences 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Do, Minh N  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 9 vom: 01. Sept., Seite 1712-1729  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:9  |g day:01  |g month:09  |g pages:1712-1729 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2615619  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 9  |b 01  |c 09  |h 1712-1729