Shape Control of Colloidal Cu2-x S Polyhedral Nanocrystals by Tuning the Nucleation Rates

Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 28(2016), 18 vom: 27. Sept., Seite 6705-6715
1. Verfasser: van der Stam, Ward (VerfasserIn)
Weitere Verfasser: Gradmann, Sabine, Altantzis, Thomas, Ke, Xiaoxing, Baldus, Marc, Bals, Sara, de Mello Donega, Celso
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions
Beschreibung:Date Completed 19.03.2018
Date Revised 13.11.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756