|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM265047633 |
003 |
DE-627 |
005 |
20231224211429.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.24501
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0883.xml
|
035 |
|
|
|a (DE-627)NLM265047633
|
035 |
|
|
|a (NLM)27709623
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Maekawa, Shintaro
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Refractive indices of organo-metallic and -metalloid compounds
|b A long-range corrected DFT study
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.07.2018
|
500 |
|
|
|a Date Revised 19.07.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2016 Wiley Periodicals, Inc.
|
520 |
|
|
|a Refractive indices of metal- and metalloid-containing compounds are systematically evaluated using the Lorentz-Lorenz equation with polarizabilities obtained via density functional theory (DFT). Among exchange-correlation functionals studied, the long-range corrected (LC) fuctionals yield the lowest errors for the polarizabilities of gaseous compounds and refractive indices of liquids. The LC-DFT predicts very well the wavelength dependence of refractive indices. A scheme for computing Abbe numbers of organometallic and organometaloid compounds is proposed and a refractive index - Abbe number plot for 80 compounds is constructed. The compounds containing heavier metals tend to have higher refractive index and lower Abbe number, but several outliers, among them Te(CH3 )2 , Ni(PF3 )4 , Sb(C2 F3 )3 , Hg(C2 F3 )2 , are found. For Hg(C2 F3 )2 , also the effect of intramolecular and intermolecular degrees of freedom on polarizability is investigated. The absolute relative error in polarizability decreases from 5.7% for monomer model to 1.7% when a dimer model (derived from the available experimental crystal data) is employed. © 2016 Wiley Periodicals, Inc
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Abbe number
|
650 |
|
4 |
|a density functional theory
|
650 |
|
4 |
|a optical dispersion
|
650 |
|
4 |
|a polarizability
|
650 |
|
4 |
|a refractive index
|
700 |
1 |
|
|a Moorthi, Krzysztof
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shigeta, Yasuteru
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 37(2016), 32 vom: 15. Dez., Seite 2759-2769
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2016
|g number:32
|g day:15
|g month:12
|g pages:2759-2769
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.24501
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2016
|e 32
|b 15
|c 12
|h 2759-2769
|