|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM264989538 |
003 |
DE-627 |
005 |
20240327232316.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erw357
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1350.xml
|
035 |
|
|
|a (DE-627)NLM264989538
|
035 |
|
|
|a (NLM)27702996
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Osborn, Hannah L
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis
|b a transgenic analysis
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.02.2018
|
500 |
|
|
|a Date Revised 27.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a In C4 species, the major β-carbonic anhydrase (β-CA) localized in the mesophyll cytosol catalyses the hydration of CO2 to HCO3-, which phosphoenolpyruvate carboxylase uses in the first step of C4 photosynthesis. To address the role of CA in C4 photosynthesis, we generated transgenic Setaria viridis depleted in β-CA. Independent lines were identified with as little as 13% of wild-type CA. No photosynthetic defect was observed in the transformed lines at ambient CO2 partial pressure (pCO2). At low pCO2, a strong correlation between CO2 assimilation rates and CA hydration rates was observed. C18O16O isotope discrimination was used to estimate the mesophyll conductance to CO2 diffusion from the intercellular air space to the mesophyll cytosol (gm) in control plants, which allowed us to calculate CA activities in the mesophyll cytosol (Cm). This revealed a strong relationship between the initial slope of the response of the CO2 assimilation rate to cytosolic pCO2 (ACm) and cytosolic CA activity. However, the relationship between the initial slope of the response of CO2 assimilation to intercellular pCO2 (ACi) and cytosolic CA activity was curvilinear. This indicated that in S. viridis, mesophyll conductance may be a contributing limiting factor alongside CA activity to CO2 assimilation rates at low pCO2
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a C18O16O isotope discrimination
|
650 |
|
4 |
|a C4 photosynthesis
|
650 |
|
4 |
|a Carbonic anhydrase
|
650 |
|
4 |
|a Setaria viridis
|
650 |
|
4 |
|a mesophyll conductance
|
650 |
|
4 |
|a transformation
|
650 |
|
7 |
|a Oxygen Isotopes
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Carbonic Anhydrases
|2 NLM
|
650 |
|
7 |
|a EC 4.2.1.1
|2 NLM
|
700 |
1 |
|
|a Alonso-Cantabrana, Hugo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sharwood, Robert E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Covshoff, Sarah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Evans, John R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Furbank, Robert T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a von Caemmerer, Susanne
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 68(2017), 2 vom: 09. Jan., Seite 299-310
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:68
|g year:2017
|g number:2
|g day:09
|g month:01
|g pages:299-310
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erw357
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 68
|j 2017
|e 2
|b 09
|c 01
|h 299-310
|