Prediction of coagulation and flocculation processes using ANN models and fuzzy regression

Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid frac...

Description complète

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 74(2016), 6 vom: 01. Sept., Seite 1296-1311
Auteur principal: Zangooei, Hossein (Auteur)
Autres auteurs: Delnavaz, Mohammad, Asadollahfardi, Gholamreza
Format: Article
Langue:English
Publié: 2016
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article Aluminum Compounds Chlorides Aluminum Chloride 3CYT62D3GA
LEADER 01000caa a22002652c 4500
001 NLM264841417
003 DE-627
005 20250220172441.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0882.xml 
035 |a (DE-627)NLM264841417 
035 |a (NLM)27685960 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zangooei, Hossein  |e verfasserin  |4 aut 
245 1 0 |a Prediction of coagulation and flocculation processes using ANN models and fuzzy regression 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.06.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R2) of 0.96 and root mean square error of 0.0106 
650 4 |a Journal Article 
650 7 |a Aluminum Compounds  |2 NLM 
650 7 |a Chlorides  |2 NLM 
650 7 |a Aluminum Chloride  |2 NLM 
650 7 |a 3CYT62D3GA  |2 NLM 
700 1 |a Delnavaz, Mohammad  |e verfasserin  |4 aut 
700 1 |a Asadollahfardi, Gholamreza  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 74(2016), 6 vom: 01. Sept., Seite 1296-1311  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:74  |g year:2016  |g number:6  |g day:01  |g month:09  |g pages:1296-1311 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2016  |e 6  |b 01  |c 09  |h 1296-1311