Isolation, purification and analysis of dissolved organic carbon from Gohagoda uncontrolled open dumpsite leachate, Sri Lanka
Extract and analysis of the Dissolved Organic Carbon (DOC) fractions were analyzed from the leachate of an uncontrolled dumpsite at Gohagoda, Sri Lanka. DOC fractions, humic acid (HA), fulvic acid (FA) and the hydrophilic (Hyd) fractions were isolated and purified with the resin techniques. Spectros...
Veröffentlicht in: | Environmental technology. - 1998. - 38(2017), 13-14 vom: 26. Juli, Seite 1610-1618 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article DOC humic acids landfill leachate leachate characterization municipal solid waste Benzopyrans Humic Substances Water Pollutants, Chemical Carbon mehr... |
Zusammenfassung: | Extract and analysis of the Dissolved Organic Carbon (DOC) fractions were analyzed from the leachate of an uncontrolled dumpsite at Gohagoda, Sri Lanka. DOC fractions, humic acid (HA), fulvic acid (FA) and the hydrophilic (Hyd) fractions were isolated and purified with the resin techniques. Spectroscopic techniques and elemental analysis were performed to characterize DOCs. Maximum TOC and DOC values recorded were 56,955 and 28,493 mg/L, respectively. Based on the total amount of DOC fractionation, Hyd dominated accounting for ∼60%, and HA and FA constituted ∼22% and ∼17%, respectively, exhibiting the mature phase of the dumpsite. The elemental analysis of DOCs revealed carbon variation following HA > FA > Hyd, while hydrogen and nitrogen were similar in each fraction. The N/C ratio for HA was recorded as 0.18, following a similar trend in old dumpsite leachate elsewhere. The O/C ratios for HA and FA were recorded higher as much as 1.0 and 9.3, respectively, indicating high degree of carbon mineralization in the leachates. High content of carboxylic, phenolic and lactone groups in all DOCs was observed disclosing their potential for toxic substances transportation. The results strongly suggest the risk associated with DOCs in dumpsite leachate to the aquatic and terrestrial environment |
---|---|
Beschreibung: | Date Completed 11.10.2017 Date Revised 11.10.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2016.1235229 |