Thermocline deepening boosts ecosystem metabolism : evidence from a large-scale lake enclosure experiment simulating a summer storm

© 2016 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 23(2017), 4 vom: 23. Apr., Seite 1448-1462
1. Verfasser: Giling, Darren P (VerfasserIn)
Weitere Verfasser: Nejstgaard, Jens C, Berger, Stella A, Grossart, Hans-Peter, Kirillin, Georgiy, Penske, Armin, Lentz, Maren, Casper, Peter, Sareyka, Jörg, Gessner, Mark O
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article climate variability ecosystem productivity extreme events gross primary production mesocosm respiration stratified lakes
LEADER 01000caa a22002652c 4500
001 NLM264654676
003 DE-627
005 20250220165414.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13512  |2 doi 
028 5 2 |a pubmed25n0882.xml 
035 |a (DE-627)NLM264654676 
035 |a (NLM)27664076 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Giling, Darren P  |e verfasserin  |4 aut 
245 1 0 |a Thermocline deepening boosts ecosystem metabolism  |b evidence from a large-scale lake enclosure experiment simulating a summer storm 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a ErratumIn: Glob Chang Biol. 2020 Dec;26(12):7284-7287. doi: 10.1111/gcb.15350. - PMID 33222356 
500 |a Citation Status MEDLINE 
520 |a © 2016 John Wiley & Sons Ltd. 
520 |a Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes 
650 4 |a Journal Article 
650 4 |a climate variability 
650 4 |a ecosystem productivity 
650 4 |a extreme events 
650 4 |a gross primary production 
650 4 |a mesocosm 
650 4 |a respiration 
650 4 |a stratified lakes 
700 1 |a Nejstgaard, Jens C  |e verfasserin  |4 aut 
700 1 |a Berger, Stella A  |e verfasserin  |4 aut 
700 1 |a Grossart, Hans-Peter  |e verfasserin  |4 aut 
700 1 |a Kirillin, Georgiy  |e verfasserin  |4 aut 
700 1 |a Penske, Armin  |e verfasserin  |4 aut 
700 1 |a Lentz, Maren  |e verfasserin  |4 aut 
700 1 |a Casper, Peter  |e verfasserin  |4 aut 
700 1 |a Sareyka, Jörg  |e verfasserin  |4 aut 
700 1 |a Gessner, Mark O  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 23(2017), 4 vom: 23. Apr., Seite 1448-1462  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:23  |g year:2017  |g number:4  |g day:23  |g month:04  |g pages:1448-1462 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13512  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 4  |b 23  |c 04  |h 1448-1462