Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra

Copyright © 2016 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 55(2017), 4 vom: 22. Apr., Seite 318-322
1. Verfasser: Adebileje, Sikiru Afolabi (VerfasserIn)
Weitere Verfasser: Ghasemi, Keyvan, Aiyelabegan, Hammed Tanimowo, Saligheh Rad, Hamidreza
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article brain gliomas dictionary pair learning proton magnetic resonance spectroscopy sub-dictionary learning
LEADER 01000caa a22002652c 4500
001 NLM264635507
003 DE-627
005 20250220165054.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.4532  |2 doi 
028 5 2 |a pubmed25n0882.xml 
035 |a (DE-627)NLM264635507 
035 |a (NLM)27662108 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Adebileje, Sikiru Afolabi  |e verfasserin  |4 aut 
245 1 0 |a Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2018 
500 |a Date Revised 05.04.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2016 John Wiley & Sons, Ltd. 
520 |a Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd 
650 4 |a Journal Article 
650 4 |a brain gliomas 
650 4 |a dictionary pair learning 
650 4 |a proton magnetic resonance spectroscopy 
650 4 |a sub-dictionary learning 
700 1 |a Ghasemi, Keyvan  |e verfasserin  |4 aut 
700 1 |a Aiyelabegan, Hammed Tanimowo  |e verfasserin  |4 aut 
700 1 |a Saligheh Rad, Hamidreza  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 55(2017), 4 vom: 22. Apr., Seite 318-322  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnas 
773 1 8 |g volume:55  |g year:2017  |g number:4  |g day:22  |g month:04  |g pages:318-322 
856 4 0 |u http://dx.doi.org/10.1002/mrc.4532  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2017  |e 4  |b 22  |c 04  |h 318-322