Hierarchical Representation Learning for Kinship Verification

Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 10. Jan., Seite 289-302
1. Verfasser: Kohli, Naman (VerfasserIn)
Weitere Verfasser: Vatsa, Mayank, Singh, Richa, Noore, Afzel, Majumdar, Angshul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM264561635
003 DE-627
005 20250220163831.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0881.xml 
035 |a (DE-627)NLM264561635 
035 |a (NLM)27654481 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kohli, Naman  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Representation Learning for Kinship Verification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determine their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender and age and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d' , and perceptual information entropy. Utilizing the information obtained from the human study, a hierarchical kinship verification via representation learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as an output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. A new WVU kinship database is created, which consists of multiple images per subject to facilitate kinship verification. The results show that the proposed deep learning framework (KVRL-fcDBN) yields the state-of-the-art kinship verification accuracy on the WVU kinship database and on four existing benchmark data sets. Furthermore, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification 
650 4 |a Journal Article 
700 1 |a Vatsa, Mayank  |e verfasserin  |4 aut 
700 1 |a Singh, Richa  |e verfasserin  |4 aut 
700 1 |a Noore, Afzel  |e verfasserin  |4 aut 
700 1 |a Majumdar, Angshul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 10. Jan., Seite 289-302  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:10  |g month:01  |g pages:289-302 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 10  |c 01  |h 289-302