Unsupervised Domain Adaptation With Label and Structural Consistency

Unsupervised domain adaptation deals with scenarios in which labeled data are available in the source domain, but only unlabeled data can be observed in the target domain. Since the classifiers trained by source-domain data would not be expected to generalize well in the target domain, how to transf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 18. Dez., Seite 5552-5562
1. Verfasser: Hou, Cheng-An (VerfasserIn)
Weitere Verfasser: Tsai, Yao-Hung Hubert, Yeh, Yi-Ren, Wang, Yu-Chiang Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM264561627
003 DE-627
005 20231224210349.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2609820  |2 doi 
028 5 2 |a pubmed24n0881.xml 
035 |a (DE-627)NLM264561627 
035 |a (NLM)27654485 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Cheng-An  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Domain Adaptation With Label and Structural Consistency 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2017 
500 |a Date Revised 23.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation deals with scenarios in which labeled data are available in the source domain, but only unlabeled data can be observed in the target domain. Since the classifiers trained by source-domain data would not be expected to generalize well in the target domain, how to transfer the label information from source to target-domain data is a challenging task. A common technique for unsupervised domain adaptation is to match cross-domain data distributions, so that the domain and distribution differences can be suppressed. In this paper, we propose to utilize the label information inferred from the source domain, while the structural information of the unlabeled target-domain data will be jointly exploited for adaptation purposes. Our proposed model not only reduces the distribution mismatch between domains, improved recognition of target-domain data can be achieved simultaneously. In the experiments, we will show that our approach performs favorably against the state-of-the-art unsupervised domain adaptation methods on benchmark data sets. We will also provide convergence, sensitivity, and robustness analysis, which support the use of our model for cross-domain classification 
650 4 |a Journal Article 
700 1 |a Tsai, Yao-Hung Hubert  |e verfasserin  |4 aut 
700 1 |a Yeh, Yi-Ren  |e verfasserin  |4 aut 
700 1 |a Wang, Yu-Chiang Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 18. Dez., Seite 5552-5562  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:18  |g month:12  |g pages:5552-5562 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2609820  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 18  |c 12  |h 5552-5562