CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming
© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 67(2016), 19 vom: 10. Okt., Seite 5725-5741 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Broad-spectrum resistance CaLecRK-S.5 L-type lectin receptor kinase RNA sequencing SAR priming tobamovirus. Lectins mehr... |
Zusammenfassung: | © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming |
---|---|
Beschreibung: | Date Completed 20.11.2017 Date Revised 26.03.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1460-2431 |