|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM264395492 |
003 |
DE-627 |
005 |
20231224210006.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.24491
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0881.xml
|
035 |
|
|
|a (DE-627)NLM264395492
|
035 |
|
|
|a (NLM)27634573
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Katouda, Michio
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.07.2018
|
500 |
|
|
|a Date Revised 19.07.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2016 Wiley Periodicals, Inc.
|
520 |
|
|
|a A new parallel algorithm and its implementation for the RI-MP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a GPGPU
|
650 |
|
4 |
|a K computer
|
650 |
|
4 |
|a NTChem
|
650 |
|
4 |
|a TSUBAME 2.5
|
650 |
|
4 |
|a electron correlation theory
|
650 |
|
4 |
|a massively parallel algorithm
|
650 |
|
4 |
|a second-order Møller-Plesset perturbation theory
|
700 |
1 |
|
|a Naruse, Akira
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hirano, Yukihiko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nakajima, Takahito
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 37(2016), 30 vom: 15. Nov., Seite 2623-2633
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2016
|g number:30
|g day:15
|g month:11
|g pages:2623-2633
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.24491
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2016
|e 30
|b 15
|c 11
|h 2623-2633
|