Dissolution of Sessile Microdroplets of Electrolyte and Graphene Oxide Solutions in an Ouzo System
Manipulating the way a droplet shrinks by evaporation or dissolution is an effective approach for assembling dissolved nanomaterials. In this work, we investigate the dissolution dynamics of a submicroliter sessile droplet of electrolyte aqueous solution and of graphene oxide suspension immersed in...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 40 vom: 11. Okt., Seite 10296-10304 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Manipulating the way a droplet shrinks by evaporation or dissolution is an effective approach for assembling dissolved nanomaterials. In this work, we investigate the dissolution dynamics of a submicroliter sessile droplet of electrolyte aqueous solution and of graphene oxide suspension immersed in a binary mixture of solvents, among which one is miscible and the other is immiscible with water (i.e., an Ouzo system). Our measurements reveal an interesting two-stage dissolution of the droplet: a fast initial stage and a slow second stage. The duration of the first stage is longer at a lower temperature, leading to a counterintuitive result that the dissolution completes faster at reduced temperature. The presence of graphene oxide in the droplet dramatically alters the dissolution dynamics, possibly due to its enrichment at the droplet surface. The finding from this work provides useful guideline for designing conditions to pack nanomaterials by dissolving droplets, especially for those temperature sensitive components |
---|---|
Beschreibung: | Date Completed 06.06.2018 Date Revised 06.06.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |