Efficient Non-Consecutive Feature Tracking for Robust Structure-From-Motion

Structure-from-motion (SfM) largely relies on feature tracking. In image sequences, if disjointed tracks caused by objects moving in and out of the field of view, occasional occlusion, or image noise are not handled well, corresponding SfM could be affected. This problem becomes severer for large-sc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 24. Dez., Seite 5957-5970
1. Verfasser: Guofeng Zhang (VerfasserIn)
Weitere Verfasser: Haomin Liu, Zilong Dong, Jiaya Jia, Tien-Tsin Wong, Hujun Bao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM26429825X
003 DE-627
005 20231224205801.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2607425  |2 doi 
028 5 2 |a pubmed24n0881.xml 
035 |a (DE-627)NLM26429825X 
035 |a (NLM)27623586 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guofeng Zhang  |e verfasserin  |4 aut 
245 1 0 |a Efficient Non-Consecutive Feature Tracking for Robust Structure-From-Motion 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Structure-from-motion (SfM) largely relies on feature tracking. In image sequences, if disjointed tracks caused by objects moving in and out of the field of view, occasional occlusion, or image noise are not handled well, corresponding SfM could be affected. This problem becomes severer for large-scale scenes, which typically requires to capture multiple sequences to cover the whole scene. In this paper, we propose an efficient non-consecutive feature tracking framework to match interrupted tracks distributed in different subsequences or even in different videos. Our framework consists of steps of solving the feature "dropout" problem when indistinctive structures, noise or large image distortion exists, and of rapidly recognizing and joining common features located in different subsequences. In addition, we contribute an effective segment-based coarse-to-fine SfM algorithm for robustly handling large data sets. Experimental results on challenging video data demonstrate the effectiveness of the proposed system 
650 4 |a Journal Article 
700 1 |a Haomin Liu  |e verfasserin  |4 aut 
700 1 |a Zilong Dong  |e verfasserin  |4 aut 
700 1 |a Jiaya Jia  |e verfasserin  |4 aut 
700 1 |a Tien-Tsin Wong  |e verfasserin  |4 aut 
700 1 |a Hujun Bao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 24. Dez., Seite 5957-5970  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:24  |g month:12  |g pages:5957-5970 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2607425  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 24  |c 12  |h 5957-5970