Familiarity Vs Trust : A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods

Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gather...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 23(2017), 1 vom: 01. Jan., Seite 271-280
1. Verfasser: Dasgupta, Aritra (VerfasserIn)
Weitere Verfasser: Lee, Joon-Yong, Wilson, Ryan, Lafrance, Robert A, Cramer, Nick, Cook, Kristin, Payne, Samuel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM264166264
003 DE-627
005 20231224205505.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0880.xml 
035 |a (DE-627)NLM264166264 
035 |a (NLM)27608465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dasgupta, Aritra  |e verfasserin  |4 aut 
245 1 0 |a Familiarity Vs Trust  |b A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Lee, Joon-Yong  |e verfasserin  |4 aut 
700 1 |a Wilson, Ryan  |e verfasserin  |4 aut 
700 1 |a Lafrance, Robert A  |e verfasserin  |4 aut 
700 1 |a Cramer, Nick  |e verfasserin  |4 aut 
700 1 |a Cook, Kristin  |e verfasserin  |4 aut 
700 1 |a Payne, Samuel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 23(2017), 1 vom: 01. Jan., Seite 271-280  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:23  |g year:2017  |g number:1  |g day:01  |g month:01  |g pages:271-280 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2017  |e 1  |b 01  |c 01  |h 271-280