|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM263887510 |
003 |
DE-627 |
005 |
20231224204858.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.6b02165
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0879.xml
|
035 |
|
|
|a (DE-627)NLM263887510
|
035 |
|
|
|a (NLM)27575950
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mandal, Deep
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Solvent Induced Morphological Evolution of Cholesterol Based Glucose Tailored Amphiphiles
|b Transformation from Vesicles to Nanoribbons
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.06.2018
|
500 |
|
|
|a Date Revised 06.06.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Supramolecular self-assembly of low molecular mass amphiphiles is of topical interest with the urge to achieve precise control over the formation of various self-aggregated structures. Particularly, fabrication of multifarious nanostructures from single molecular backbone would be highly advantageous for task specific applications of the self-aggregates. To this end, the present study reports the solvent triggered evolution of hierarchical self-assembled structures of cholesterol based glucose appended amphiphiles and the pathway of structural transition. The amphiphiles formed bilayered vesicles in water and gels in different organic solvents. In DMSO-water solvent mixture, it showed gradual transition in the morphology of self-aggregates from vesicle-to-fiber and intermediate morphologies depending on the solvent compositions. Microscopic and spectroscopic investigations showed that morphological transformation took place through fusion, elongation and twisting of self-aggregates owing to the reorganization of the amphiphiles (H-type to J-type) in varied solvent polarity. Moreover, sheetlike molecular organization originating from hydrogen bonding and solvophobic interaction played a vital role in the formation of nanoribbons that led to the formation of gel fibril network. This study endows a new strategy to develop solvent induced multistructured self-aggregates from a single molecular scaffold, unraveling the route of forming hierarchical self-assembly
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Dinda, Soumik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choudhury, Pritam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Das, Prasanta Kumar
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 32(2016), 38 vom: 27. Sept., Seite 9780-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2016
|g number:38
|g day:27
|g month:09
|g pages:9780-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.6b02165
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2016
|e 38
|b 27
|c 09
|h 9780-9
|