Effect of Molecular Structure on Stability of Organic Nanoparticles Formed by Bodipy Dimers
The objective was to evaluate the stability of organic nanoparticles made from Bodipy dimers. Bodipy dimers with different length of linkers were synthesized via multicomponent Passerini reaction, and could form the fluorescent nanoparticles (FNPs) through nanoprecipitation. Bodipy-dimers FNPs with...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 32(2016), 37 vom: 20. Sept., Seite 9575-81 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | The objective was to evaluate the stability of organic nanoparticles made from Bodipy dimers. Bodipy dimers with different length of linkers were synthesized via multicomponent Passerini reaction, and could form the fluorescent nanoparticles (FNPs) through nanoprecipitation. Bodipy-dimers FNPs with long chain linker indicated better stability in biological condition than those with short one as revealed by changes of diameter and size distribution. The FNPs possessed high physical homogeneity and low cytotoxicity. The molecular structure dependent stability was also validated by confocal laser scanning microscope based on the dissociation-induced fluorescence recovering. Importantly, stable FNPs also could be used to load hydrophobic cargoes and deliver them into cytoplasm. We believe this systematic study between structure and stability might open new opportunities for designing stable nanoparticles for various applications |
---|---|
Beschreibung: | Date Completed 06.06.2018 Date Revised 06.06.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b02118 |